PCT09 RAW SEQUENCE LISTING DATE: 11/14/2001 PATENT APPLICATION: US/09/831,050 TIME: 14:10:22 Input Set : A:\seqlist_1581.0800000 Output Set: N:\CRF3\11142001\1831050.raw ``` 6 <110> APPLICANT: SHONE, Clifford Charles SUTTON, John Mark 7 8 HALLIS, Bassam SILMAN, Nigel 11 <120> TITLE OF INVENTION: Delivery of Superoxide Dismutase to Neuronal Cells 13 <130> FILE REFERENCE: 1581.0800000 15 <140> CURRENT APPLICATION NUMBER: 09/831,050 16 <141> CURRENT FILING DATE: 1999-11-05 18 <150> PRIOR APPLICATION NUMBER: PCT/GB99/03699 ENTERED 19 <151> PRIOR FILING DATE: 1998-11-05 21 <160> NUMBER OF SEQ ID NOS: 11 23 <170> SOFTWARE: PatentIn Ver. 2.1 25 <210> SEQ ID NO: 1 26 <211> LENGTH: 204 27 <212> TYPE: PRT 28 <213> ORGANISM: Bacillus caldotenax 30 <400> SEQUENCE: 1 Met Pro Phe Glu Leu Pro Ala Leu Pro Tyr Pro Tyr Asp Ala Leu Glu 32 Pro His Ile Asp Lys Glu Thr Met Asn Ile His His Thr Lys His His 34 35 25 Asn Thr Tyr Val Thr Asn Leu Asn Ala Ala Leu Glu Gly His Pro Asp 37 38 35 40 40 Leu Gln Asn Lys Ser Leu Glu Glu Leu Leu Ser Asn Leu Glu Ala Leu 55 Pro Glu Ser Ile Arg Thr Ala Val Arg Asn Asn Gly Gly His Ala 43 75 44 70 Asn His Ser Leu Phe Trp Thr Ile Leu Ser Pro Asn Gly Gly Glu Glu 46 47 Pro Thr Gly Glu Leu Ala Glu Ala Ile Asn Lys Lys Phe Gly Ser Phe 49 50 105 Thr Ala Phe Lys Asp Glu Phe Ser Lys Ala Ala Gly Arg Phe Gly 53 120 Ser Gly Trp Ala Trp Leu Val Val Asn Asn Gly Glu Leu Glu Ile Thr 55 56 135 58 Ser Thr Pro Asn Gln Asp Ser Pro Ile Met Glu Gly Lys Thr Pro Ile 59 150 155 61 Leu Gly Leu Asp Val Trp Glu His Ala Tyr Tyr Leu Lys Tyr Gln Asn 170 Arg Arg Pro Glu Tyr Ile Ala Ala Phe Trp Asn Ile Val Asn Trp Asp 65 185 67 Glu Val Ala Lys Arg Tyr Ser Glu Ala Lys Ala Lys 195 200 72 <210> SEQ ID NO: 2 73 <211> LENGTH: 204 74 <212> TYPE: PRT 75 <213> ORGANISM: Bacillus stearothermophilus ``` DATE: 11/14/2001 TIME: 14:10:22 ### RAW SEQUENCE LISTING PATENT APPLICATION: US/09/831,050 Input Set : A:\seqlist_1581.0800000 Output Set: N:\CRF3\11142001\1831050.raw 77 <400> SEQUENCE: 2 78 Met Pro Phe Glu Leu Pro Ala Leu Pro Tyr Pro Tyr Asp Ala Leu Glu 79 Pro His Ile Asp Lys Glu Thr Met Asn Ile His His Thr Lys His His 81 82 25 Asn Thr Tyr Val Thr Asn Leu Asn Ala Ala Leu Glu Gly His Pro Asp 85 40 Leu Gln Asn Lys Ser Leu Glu Glu Leu Leu Ser Asn Leu Glu Ala Leu 87 55 90 Pro Glu Ser Ile Arg Thr Ala Val Arg Asn Asn Gly Gly His Ala 70 75 91 Asn His Ser Leu Phe Trp Thr Ile Leu Ser Pro Asn Gly Gly Glu Glu 93 90 85 Pro Thr Gly Glu Leu Ala Asp Ala Ile Asn Lys Lys Phe Gly Ser Phe 96 105 97 Thr Ala Phe Lys Asp Glu Phe Ser Lys Ala Ala Ala Gly Arg Phe Gly 99 100 120 Ser Gly Trp Ala Trp Leu Val Val Asn Asn Gly Glu Leu Glu Ile Thr 102 103 135 Ser Thr Pro Asn Gln Asp Ser Pro Ile Met Glu Gly Lys Thr Pro Ile 150 155 106 145 108 Leu Gly Leu Asp Val Trp Glu His Ala Tyr Tyr Leu Lys Tyr Gln Asn 109 165 170 111 Arg Arg Pro Glu Tyr Ile Ala Ala Phe Trp Asn Val Val Asn Trp Asp 185 112 180 114 Glu Val Ala Lys Arg Tyr Ser Glu Ala Lys Ala Lys 200 119 <210> SEQ ID NO: 3 120 <211> LENGTH: 1067 121 <212> TYPE: PRT 122 <213> ORGANISM: Artificial Sequence 124 <220> FEATURE: 125 <223> OTHER INFORMATION: Description of Artificial Sequence:construct 127 <400> SEQUENCE: 3 Met Pro Phe Glu Leu Pro Ala Leu Pro Tyr Pro Tyr Asp Ala Leu Glu 129 131 Pro His Ile Asp Lys Glu Thr Met Asn Ile His His Thr Lys His His 132 25 134 Asn Thr Tyr Val Thr Asn Leu Asn Ala Ala Leu Glu Gly His Pro Asp 135 35 40 137 Leu Gln Asn Lys Ser Leu Glu Glu Leu Leu Ser Asn Leu Glu Ala Leu Pro Glu Ser Ile Arg Thr Ala Val Arg Asn Asn Gly Gly His Ala 140 141 Asn His Ser Leu Phe Trp Thr Ile Leu Ser Pro Asn Gly Gly Glu Glu 143 144 90 146 Pro Thr Gly Glu Leu Ala Asp Ala Ile Asn Lys Lys Phe Gly Ser Phe 147 105 Thr Ala Phe Lys Asp Glu Phe Ser Lys Ala Ala Ala Gly Arg Phe Gly DATE: 11/14/2001 TIME: 14:10:22 # RAW SEQUENCE LISTING PATENT APPLICATION: US/09/831,050 Input Set : A:\seqlist_1581.0800000 Output Set: N:\CRF3\11142001\I831050.raw | | | | | | | | | | | | | | | | | • | |------------|---------|------------|------|--------------|--------|-------------|------|-------|------|----------------|----------|-------|-------|------|-------|------| | 150 | | | 115 | | | | | 120 | | | | | 125 | | • | | | 152 | Ser | Gly | Trp | Ala | Trp | Leu | Val | Val | Asn | Asn | Gly | Glu | Leu | Glu | Ile | Thr | | 153 | | 130 | | • | | | 135 | | | | | 140 | | | | | | 155 | Ser | Thr | Pro | Asn | Gln | Asp | Ser | Pro | Ile | Met | Glu | Gly | Lys | Thr | Pro | Ile | | 156 | 145 | | | | | 150 | | | | | 155 | | | | | 160 | | 158 | Leu | Gly | Leu | Asp | Val | ${\tt Trp}$ | Glu | His | Ala | \mathtt{Tyr} | Tyr | Leu | Lys | Tyr | Gln | Asn | | 159 | | | | | 165 | | | | | 170 | | | | | 175 | | | 161 | Arg | Arg | Pro | Glu | Tyr | Ile | Ala | Ala | Phe | ${\tt Trp}$ | Asn | Val | Val | Asn | Trp | Asp | | 162 | | | | 180 | | | | | 185 | | | | | 190 | | | | 164 | Glu | Val | Ala | Lys | Arg | Tyr | Ser | Glu | Ala | Lys | Ala | Lys | Gln | Arg | Ser | Cys | | 165 | | | 195 | | | | | 200 | | | | | 205 | | | | | 167 | Gly | Leu | Val | Pro | Arg | Gly | Ser | Gly | Pro | Gly | Ser | Ala | Leu | Asn | Asp | Leu | | 168 | | 210 | | | | | 215 | | | | | 220 | | | | | | 170 | Cys | Ile | Lys | Val | Asn | Asn | Trp | Asp | Leu | Phe | Phe | Ser | Pro | Ser | Glu | | | 171 | 225 | | | | | 230 | | | | | 235 | | | | | 240 | | 173 | Asn | Phe | Thr | Asn | Asp | Leu | Asn | Lys | Gly | | Glu | Ile | Thr | Ser | | Thr | | 174 | | | | | 245 | | | | | 250 | | | | _ | 255 | | | 176 | Asn | Ile | Glu | Ala | Ala | Glu | Glu | Asn | | Ser | Leu | Asp | Leu | Ile | Gln | Gln | | 177 | | | | 260 | | | | | 265 | | | | | 270 | | | | 179 | Tyr | Tyr | | Thr | Phe | Asn | Phe | | Asn | Glu | Pro | Glu | | Ile | Ser | Ile | | 180 | | | 275 | | | | | 280 | | _ | | _ | 285 | | | | | 182 | Glu | | Leu | Ser | Ser | Asp | | Ile | Gly | Gln | Leu | | Leu | Met | Pro | Asn | | 183 | | 290 | | | | | 295 | | | | | 300 | | _ | _ | | | 185 | | Glu | Arg | Phe | Pro | | Gly | Lys | Lys | Tyr | | Leu | Asp | Lys | Tyr | _ | | 186 | 305 | | | | | 310 | | | | | 315 | • | ~1 | _ | _ | 320 | | 188 | Met | Phe | His | Tyr | | Arg | Ala | GIn | Glu | | GIu | His | GLY | Lys | | Arg | | 189 | | _ | | _ | 325 | _ | | _ | | 330 | _ | _ | _ | _ | 335 | • | | 191 | Ile | Ala | Leu | | Asn | Ser | Val | Asn | | Ата | Leu | Leu | Asn | Pro | ser | Arg | | 192 | | | | 340 | _, | _ | _ | | 345 | **- 1 | . | T | **- 1 | 350 | T | 31 | | 194 | Val | Tyr | | Pne | Pne | ser | ser | | Tyr | val | Lys | ьys | | Asn | гуѕ | Ald | | 195 | ml | a 1 | 355 | . 1 - | 14-4 | Dh- | т | 360 | Штт | 370 1 | C1., | Cln | 365 | Val | Пттъ | N an | | 197 | Thr | | Ата | Ala | мет | Pne | 375 | GTĀ | ттр | vaı | GIU | 380 | ьеи | Val | тут | АБР | | 198 | D1 | 370 | 3 | 01. . | m 1 | 0 | | 17- 1 | Com | mh~ | mb ~ | | Tvc | т1. | 7 l a | 7 cn | | 200 | | Thr | Asp | GLU | THE | 390 | GIU | Val | ser | TIII | 395 | ASP | гу | Ile | нта | 400 | | 201 | 385 | m la | T1_ | т1 а | т1. | | m | т1о | C1 | Dro | | T 011 | λαη | Ile | C117 | | | 203 | TTE | Thr | TTE | тте | 405 | PIO | TAT | TTE | GTY | 410 | нта | ьеu | ASII | TTE | 415 | ASII | | 204 | 16 a.h. | T | m | T | |) an | Dha | W- 1 | C1** | | T 011 | т1. | Dho | Ser | | λla | | 206 | Mer | ьeu | тут | 420 | ASP | ASP | Pile | val | 425 | AIG | Бец | 116 | rne | 430 | GIY | пта | | 207 | 17.0] | т1. | т он | | C1., | Dho | т10 | Dro | | Tlo | λla | Tla | Dro | Val | Len | G1 v | | 209 | vaı | TTE | 435 | Leu | GIU | Pile | 116 | 440 | GIU | TTE | Ата | 116 | 445 | Val | пец | GLY | | 210 | mbw | nha | | Tou | 17 a 1 | Cor | Птт. | | λ1 a | λan | Lare | Va 1 | | Thr | Va 1 | Gln | | 212
213 | THE | 450 | нта | Leu | Vai | 261 | 455 | 116 | АТа | A511 | цуз | 460 | пец | 1111 | Vul | ÖLII | | 215 | mb ~ | | λαn | N o n | ת 1 ת | T OIL | | Tve | λνα | λan | Glu | | Фrn | Asp | Glu | Va l | | 215 | 465 | 116 | АЅР | ASII | ніа | 470 | Ser | цуз | пта | ASII | 475 | цуз | 115 | пор | Olu | 480 | | 218 | | Luc | Щттъ | Tla | Va 1 | | Δan | Ψrn | Leu | Δla | | Va 1 | Agn | Thr | Gln | | | 219 | тйт | пλэ | тАт | TTE | 485 | 1111 | UOII | 115 | Deu | 490 | Ly S | , 41 | 11011 | | 495 | | | 221 | Δen | Leu | Tlo | Δrσ | | T.v.c | Met | Lvs | Glu | | Len | Glu | Asn | Gln | | Glu | | 222 | rap | Leu | 116 | 500 | ביים | פעם | 1100 | 2,5 | 505 | | | | | 510 | | | | 222 | | | | 200 | | | | | 555 | | | | | | | | DATE: 11/14/2001 TIME: 14:10:22 # RAW SEQUENCE LISTING PATENT APPLICATION: US/09/831,050 Input Set : A:\seqlist_1581.0800000 Output Set: N:\CRF3\11142001\1831050.raw | 224
225 | Ala | Thr | Lys
515 | Ala | Ile | Ile | Asn | Tyr
520 | Gln | Tyr | Asn | Gln | Tyr
525 | Thr | Glu | Glu | |------------|-------|----------------|----------------|-----|--------|-------|------------|----------------|-------|-------------|------------|-------------|-------------|------|------------|-------| | 227
228 | Glu | Lys
530 | Asn | Asn | Ile | | Phe
535 | Asn | Ile | Asp | Asp | Leu
540 | Ser | Ser | Lys | Leu | | 230 | Asn | | Ser | Tle | Asn | | Ala | Met. | Ile | Asn | Ile | | Lvs | Phe | Leu | Asn | | 231 | 545 | O_u | 501 | 1 | 11.011 | 550 | | | | | 555 | | | | | 560 | | 233 | | Cvs | Ser | Val | Ser | Tyr | Leu | Met | Asn | Ser | Met | Ile | Pro | Tyr | Gly | Val | | 234 | | - | | | 565 | - | | | | 570 | | | | - | 575 | | | 236 | Lys | Arg | Leu | Glu | Asp | Phe | Asp | Ala | Ser | Leu | Lys | Asp | Ala | Leu | Leu | Lys | | 237 | | | | 580 | | | | | 585 | | | | | 590 | | | | 239 | Tyr | Ile | Tyr | Asp | Asn | Arg | Gly | Thr | Leu | Ile | Gly | Gln | Val | Asp | Arg | Leu | | 240 | | | 595 | | | | | 600 | | | | | 605 | | | | | 242 | Lys | - | Lys | Val | Asn | Asn | Thr | Leu | Ser | Thr | Asp | | Pro | Phe | Gln | Leu | | 243 | _ | 610 | _ | | _ | _ | 615 | _ | | | a | 620 | | m1 | a 1 | | | 245 | | Lys | Tyr | Val | Asp | | Gln | Arg | Leu | Leu | | Thr | Phe | Thr | GIu | | | 246 | 625 | T | 3 ~ ~ | т1. | т1 о | 630 | mb∞ | Com | Tlo | T 011 | 635 | T 011 | λνα | Пттх | C1 | 640 | | 248 | TTE | ьys | ASN | ше | 645 | ASI | Thr | ser | тте | 650 | ASII | Leu | Arg | TAT | 655 | ser | | 249
251 | λen | Uic | T.011 | Tla | | T.011 | Ser | Δrσ | Туг | | Sor | T.v.c | Tle | Δsn | | Glv | | 252 | ASII | птэ | пеп | 660 | кэр | ьeu | Ser | AIG | 665 | ALU | Ser | цуз | 110 | 670 | 110 | GLY | | 254 | Ser | Lvs | Va 1 | | Phe | Asp | Pro | Tle | | Lvs | Asn | Gln | Ile | | Leu | Phe | | 255 | 201 | 470 | 675 | | | E | | 680 | | -1- | | | 685 | | | | | 257 | Asn | Leu | Glu | Ser | Ser | Lys | Ile | Glu | Val | Ile | Leu | Lys | Asn | Ala | Ile | Val | | 258 | | 690 | | | | - | 695 | | | | | 700 | | | | | | 260 | Tyr | Asn | Ser | Met | Tyr | Glu | Asn | Phe | Ser | Thr | Ser | Phe | ${\tt Trp}$ | Ile | Arg | Ile | | 261 | 705 | | | | | 710 | | | | | 715 | | | | | 720 | | 263 | Pro | Lys | Tyr | Phe | Asn | Ser | Ile | Ser | Leu | Asn | Asn | Glu | Tyr | Thr | | Ile | | 264 | | | | | 725 | | | | | 730 | | | | | 735 | _ | | 266 | Asn | Cys | Met | | | Asn | Ser | Gly | _ | Lys | Val | Ser | Leu | | Tyr | Gly | | 267 | | 1 | - 1 | 740 | | | a 1 | | 745 | 01 - | a 1 | ~1 ~ | T | 750 | 3 | 17- 7 | | 269 | GLu | ile | | Trp | Thr | Leu | Gln | _ | Thr | GIN | GIU | ше | туs
765 | GIN | Arg | vaı | | 270 | 17n 1 | Dha | 755 | m | Com | Cln | Met | 760 | A can | т1. | C07 | N a n | | т1 о | λan | λrα | | 272
273 | Val | 770 | гуз | TAT | ser | GIII | 775 | 116 | ASII | TTE | ser | 780 | тут | TIE | ASII | AIG | | 275 | Ψrn | | Dho | Val | Thr | Tle | Thr | Δsn | Asn | Ara | Len | | Asn | Ser | Lvs | Tle | | 276 | 785 | 110 | 1110 | Vul | 1111 | 790 | 1111 | 71011 | 21011 | **** 9 | 795 | | | , | 272 | 800 | | 278 | | Tle | Asn | Glv | Ara | | Ile | Asp | Gln | Lvs | | Ile | Ser | Asn | Leu | | | 279 | -1- | | | 1 | 805 | | | | | 810 | | | | | 815 | | | 281 | Asn | Ile | His | Ala | - | Asn | Asn | Ile | Met | | Lys | Leu | Asp | Gly | Cys | Arg | | 282 | | | | 820 | | | | | 825 | | _ | | • | 830 | - | _ | | 284 | Asp | Thr | His | Arg | Tyr | Ile | Trp | Ile | Lys | Tyr | Phe | Asn | Leu | Phe | Asp | Lys | | 285 | - | | 835 | _ | _ | | | 840 | | | | | 845 | | | | | 287 | Glu | Leu | Asn | Glu | Lys | Glu | Ile | Lys | Asp | Leu | Tyr | Asp | Asn | Gln | Ser | Asn | | 288 | | 850 | | | • | | 855 | | | | | 860 | | | | | | 290 | Ser | Gly | Ile | Leu | Lys | Asp | Phe | Trp | Gly | Asp | Tyr | Leu | Gln | Tyr | Asp | Lys | | 291 | 865 | | | • | | 870 | | | | | 875 | | | | | 880 | | 293 | Pro | \mathtt{Tyr} | \mathtt{Tyr} | Met | | Asn | Leu | Tyr | Asp | | Asn | Lys | Tyr | Val | | Val | | 294 | | | _ | _ | 885 | | | | | 890 | _ | _ | | _ | 895 | | | 296 | Asn | Asn | Val | Gly | Ile | Arg | Gly | \mathtt{Tyr} | Met | ${ t Tyr}$ | Leu | Lys | Gly | Pro | Arg | Gly | # RAW SEQUENCE LISTING DATE: 11/14/2001 PATENT APPLICATION: US/09/831,050 TIME: 14:10:22 Input Set : A:\seqlist_1581.0800000 Output Set: N:\CRF3\11142001\1831050.raw | 297 | | | | 900 | | | | | 905 | | | | | 910 | | | |--|---|---|---|---|---|--|--|--|--|---|---|--|--|--|---|--| | 299 | Ser | Val | Met | Thr | Thr | Asn | Ile | Tyr | Leu | Asn | Ser | Ser | Leu | Tyr | Arg | Gly | | 300 | | | 915 | | | | | 920 | | | | | 925 | | | | | 302 | Thr | Lys | Phe | Ile | Ile | Lys | Lys | Tyr | Ala | Ser | Gly | Asn | Lys | Asp | Asn | Ile | | 303 | | 930 | | | | | 935 | | | | | 940 | | | | | | 305 | Val | Arg | Asn | Asn | Asp | Arg | Val | Tyr | Ile | Asn | Val | Val | Val | Lys | Asn | Lys | | 306 | 945 | | | | | 950 | | | | | 955 | | | | | 960 | | 308 | Glu | Tyr | Arg | Leu | Ala | Thr | Asn | Ala | Ser | Gln | Ala | Gly | Val | Glu | Lys | Ile | | 309 | | | | | 965 | | | | | 970 | | | | | 975 | | | 311 | Leu | Ser | Ala | Leu | Glu | Ile | Pro | Asp | Val | Gly | Asn | Leu | Ser | Gln | Val | Val · | | 312 | | | | 980 | | | | | 985 | | | | | 990 | | | | 314 | Val | Met | Lys | Ser | Lys | Asn | Asp | Gln | Gly | Ile | Thr | Asn | Lys | Cys | Lys | Met | | 315 | | | 995 | | | | | 1000 | | | | | 1005 | | | • | | 317 | | | Gln | Asp | Asn | Asn | _ | Asn | Asp | Ile | _ | | Ile | Gly | Phe | His | | 318 | | 1010 | | | | | 1015 | | _ | _ | | 1020 | | | | <i>,</i> | | 320 | | | Asn | Asn | | Ala | Lys | Leu | Val | | | Asn | Trp | Tyr | | | | 321 | 1025 | | | | | 1030 | _ | | _ | | 1035 | _ | _ | | | 1040 | | 323 | Gln | Ile | GLu | _ | | Ser | Arg | Thr | | | Cys | Ser | Trp | | | lle | | 324 | - | | | | L045 | | a 1 | a1 | | 1050 | . | | | | 1055 | | | 326 | Pro | vaı | - | _ | GIY | Trp | GTA | | _ | Pro | ьeu | | | | | | | 327 | -010 | an/ | | L060 | | | | - | 1065 | | | | | | | | | | <210 | | | | | | | | | | | | | | | | | | <2112
<2122 | | | | 70 | | | | | | | | | | | | | | | | | | _ | | _ | | | | | | | | | | | 331 | Z77777 | | אאי | 2M• 7 | \ | Fini: | 20 רב | 201122 | 200 | | | | | | | | | | <213 | | | | Arti | ficia | al Se | equer | ice | | | | | | | | | 336 | <220 | > FE | ATURI | ፫: | | | | _ | | of A | Artii | ficia | al Se | eanei | nce: | construct of | | 336
337 | <220
<223 | > FEA
> OTE | ATURI
IER J | E:
ENFOR | RMAT: | | | _ | | of A | Arti | ficia | al Se | equei | nce: | construct of | | 336
337
339 | <2203
<2233
<4003 | > FEA
> OTH
> SEQ | ATURI
IER I
QUENC | E:
ENFOI
CE: 4 | RMAT: | ION: | Desc | cript | cion | | | | | | | v | | 336
337
339
340 | <2203
<2233
<4003 | > FEA
> OTH
> SEQ | ATURI
IER I
QUENC | E:
ENFOI
CE: 4 | RMAT: | | Desc | cript | cion | | | | | | | v | | 336
337
339
340
341 | <2200
<2230
<4000
Met
1 | > FEA
> OTH
> SE(
Pro | ATURI
IER I
QUENC
Phe | E:
INFOI
CE: 4
Glu | RMAT:
1
Leu
5 | ION:
Pro | Desc
Ala | cript
Leu | ion
Pro | Tyr
10 | Pro | Tyr | Asp | Ala | Leu
15 | Glu | | 336
337
339
340 | <2200
<2230
<4000
Met
1 | > FEA
> OTH
> SE(
Pro | ATURI
IER I
QUENC
Phe | E:
INFOI
CE: 4
Glu | RMAT:
1
Leu
5 | ION: | Desc
Ala | cript
Leu | ion
Pro | Tyr
10 | Pro | Tyr | Asp | Ala | Leu
15 | Glu | | 336
337
339
340
341
343 | <2200
<2230
<4000
Met
1
Pro | > FEA
> OTH
> SEQ
Pro
His | ATURE
HER D
QUENC
Phe
Ile | E:
INFOI
CE: 4
Glu
Asp
20 | RMAT:
1
Leu
5
Lys | ION:
Pro
Glu | Desc
Ala
Thr | Cript
Leu
Met | Pro
Asn
25 | Tyr
10
Ile | Pro
His | Tyr
His | Asp
Thr | Ala
Lys
30 | Leu
15
His | Glu
His | | 336
337
339
340
341
343
344 | <2200
<2230
<4000
Met
1
Pro | > FEA
> OTH
> SEQ
Pro
His | ATURE
HER D
QUENC
Phe
Ile | E:
INFOI
CE: 4
Glu
Asp
20 | RMAT:
1
Leu
5
Lys | ION:
Pro | Desc
Ala
Thr | Cript
Leu
Met | Pro
Asn
25 | Tyr
10
Ile | Pro
His | Tyr
His | Asp
Thr | Ala
Lys
30 | Leu
15
His | Glu
His | | 336
337
339
340
341
343
344
346 | <2200
<2230
<4000
Met
1
Pro | FEA
OTH
SEQ
Pro
His. | ATURE
HER D
QUENC
Phe
Ile
Tyr
35 | E:
INFOI
CE: 4
Glu
Asp
20
Val | RMAT:
l
Leu
5
Lys
Thr | ION:
Pro
Glu | Desc
Ala
Thr
Leu | Leu
Met
Asn
40 | Pro Asn 25 Ala | Tyr
10
Ile
Ala | Pro
His
Leu | Tyr
His
Glu | Asp
Thr
Gly
45 | Ala
Lys
30
His | Leu
15
His
Pro | Glu
His
Asp | | 336
337
339
340
341
343
344
346
347 | <2200
<2230
<4000
Met
1
Pro | FEA
OTH
SEQ
Pro
His. | ATURE
HER D
QUENC
Phe
Ile
Tyr
35 | E:
INFOI
CE: 4
Glu
Asp
20
Val | RMAT:
l
Leu
5
Lys
Thr | Pro
Glu
Asn | Desc
Ala
Thr
Leu | Leu
Met
Asn
40 | Pro Asn 25 Ala | Tyr
10
Ile
Ala | Pro
His
Leu | Tyr
His
Glu | Asp
Thr
Gly
45 | Ala
Lys
30
His | Leu
15
His
Pro | Glu
His
Asp | | 336
337
339
340
341
343
344
346
347
349 | <2203
<2233
<4003
Met
1
Pro
Asn
Leu | FEA
OTH
SEQ
Pro
His.
Thr | ATURE
HER J
QUENC
Phe
Ile
Tyr
35
Asn | E:
INFOI
CE: 4
Glu
Asp
20
Val | RMAT:
Leu
5
Lys
Thr | Pro
Glu
Asn | Desc
Ala
Thr
Leu
Glu
55 | Leu
Met
Asn
40
Glu | Pro Asn 25 Ala Leu | Tyr
10
11e
Ala
Leu | Pro
His
Leu
Ser | Tyr
His
Glu
Asn
60 | Asp
Thr
Gly
45
Leu | Ala
Lys
30
His
Glu | Leu
15
His
Pro | Glu
His
Asp
Leu | | 336
337
339
340
341
343
344
346
347
349
350 | <2203
<2233
<4003
Met
1
Pro
Asn
Leu
Pro
65 | FEA
OTH
SEC
Pro
His.
Thr
Gln
50
Glu | ATURE
HER I
QUENC
Phe
Ile
Tyr
35
Asn
Ser | E:
INFOR
CE: 4
Glu
Asp
20
Val
Lys
Ile | RMAT:
1
Leu
5
Lys
Thr
Ser | Pro
Glu
Asn
Leu
Thr | Desc
Ala
Thr
Leu
Glu
55
Ala | Leu
Met
Asn
40
Glu
Val | Pro Asn 25 Ala Leu Arg | Tyr
10
Ile
Ala
Leu
Asn | Pro
His
Leu
Ser
Asn
75 | Tyr
His
Glu
Asn
60
Gly | Asp
Thr
Gly
45
Leu
Gly | Ala
Lys
30
His
Glu | Leu
15
His
Pro
Ala
His | Glu His Asp Leu Ala 80 | | 336
337
339
340
341
343
344
346
347
349
350
352 | <2203
<2233
<4003
Met
1
Pro
Asn
Leu
Pro
65 | FEA
OTH
SEC
Pro
His.
Thr
Gln
50
Glu | ATURE
HER I
QUENC
Phe
Ile
Tyr
35
Asn
Ser | E:
INFOR
CE: 4
Glu
Asp
20
Val
Lys
Ile | RMAT:
1
Leu
5
Lys
Thr
Ser | Pro
Glu
Asn
Leu | Desc
Ala
Thr
Leu
Glu
55
Ala | Leu
Met
Asn
40
Glu
Val | Pro Asn 25 Ala Leu Arg | Tyr
10
Ile
Ala
Leu
Asn | Pro
His
Leu
Ser
Asn
75 | Tyr
His
Glu
Asn
60
Gly | Asp
Thr
Gly
45
Leu
Gly | Ala
Lys
30
His
Glu | Leu
15
His
Pro
Ala
His | Glu His Asp Leu Ala 80 | | 336
337
339
340
341
343
344
346
347
350
352
353 | <2203
<2233
<4003
Met
1
Pro
Asn
Leu
Pro
65 | > FEA
> OTH
> SEQ
Pro
His.
Thr
Gln
50
Glu | ATURE
HER D
QUENC
Phe
Ile
Tyr
35
Asn
Ser | E:
INFOI
CE: 4
Glu
Asp
20
Val
Lys
Ile
Leu | RMAT:
Leu
5
Lys
Thr
Ser
Arg | Pro
Glu
Asn
Leu
Thr | Desc
Ala
Thr
Leu
Glu
55
Ala | Leu
Met
Asn
40
Glu
Val | Pro Asn 25 Ala Leu Arg | Tyr
10
11e
Ala
Leu
Asn
Ser | Pro
His
Leu
Ser
Asn
75
Pro | Tyr His Glu Asn 60 Gly Asn | Asp
Thr
Gly
45
Leu
Gly | Ala
Lys
30
His
Glu
Gly | Leu
15
His
Pro
Ala
His
Gly | Glu His Asp Leu Ala 80 Glu | | 336
337
339
340
341
343
344
346
347
350
352
353
355
356
358 | <2203 <2233 <4003 Met | > FEA
> OTH
> SEQ
Pro
His.
Thr
Gln
50
Glu | ATURE
HER D
QUENC
Phe
Ile
Tyr
35
Asn
Ser | E:
INFOI
CE: 4
Glu
Asp
20
Val
Lys
Ile
Leu | RMAT:
Leu
5
Lys
Thr
Ser
Arg | Pro Glu Asn Leu Thr 70 Trp | Desc
Ala
Thr
Leu
Glu
55
Ala | Leu
Met
Asn
40
Glu
Val | Pro Asn 25 Ala Leu Arg Leu Ile | Tyr
10
11e
Ala
Leu
Asn
Ser
90 | Pro
His
Leu
Ser
Asn
75
Pro | Tyr His Glu Asn 60 Gly Asn | Asp
Thr
Gly
45
Leu
Gly | Ala Lys 30 His Glu Gly Gly | Leu
15
His
Pro
Ala
His
Gly
95 | Glu His Asp Leu Ala 80 Glu | | 336
337
339
340
341
343
344
346
347
350
352
353
355
356
358
359 | <2200 <2230 <4000 Met | FEA
OTH
SEQ
Pro
His.
Thr
Gln
Glu
His | ATURE
HER D
QUENC
Phe
Ile
Tyr
35
Asn
Ser
Ser | E:
INFOI
CE: 4
Glu
Asp
20
Val
Lys
Ile
Leu
Glu
100 | RMAT: Leu 5 Lys Thr Ser Arg Phe 85 Leu | Pro Glu Asn Leu Thr 70 Trp | Desc
Ala
Thr
Leu
Glu
55
Ala
Thr | Leu
Met
Asn
40
Glu
Val
Ile | Pro Asn 25 Ala Leu Arg Leu Ile 105 | Tyr
10
11e
Ala
Leu
Asn
Ser
90
Asn | Pro
His
Leu
Ser
Asn
75
Pro | Tyr His Glu Asn 60 Gly Asn Lys | Asp
Thr
Gly
45
Leu
Gly
Gly | Ala
Lys
30
His
Glu
Gly
Gly
Gly
110 | Leu
15
His
Pro
Ala
His
Gly
95
Ser | Glu His Asp Leu Ala 80 Glu Phe | | 336
337
339
340
341
343
344
346
347
350
355
356
358
359
361 | <2200 <2230 <4000 Met | FEA
OTH
SEQ
Pro
His.
Thr
Gln
Glu
His | ATURE SECONDARY SET GLY | E:
INFOI
CE: 4
Glu
Asp
20
Val
Lys
Ile
Leu
Glu
100 | RMAT: Leu 5 Lys Thr Ser Arg Phe 85 Leu | Pro Glu Asn Leu Thr 70 Trp | Desc
Ala
Thr
Leu
Glu
55
Ala
Thr | Leu Met Asn 40 Glu Val Ile Ala Ser | Pro Asn 25 Ala Leu Arg Leu Ile 105 | Tyr
10
11e
Ala
Leu
Asn
Ser
90
Asn | Pro
His
Leu
Ser
Asn
75
Pro | Tyr His Glu Asn 60 Gly Asn Lys | Asp
Thr
Gly
45
Leu
Gly
Gly
Phe | Ala
Lys
30
His
Glu
Gly
Gly
Gly | Leu
15
His
Pro
Ala
His
Gly
95
Ser | Glu His Asp Leu Ala 80 Glu Phe | | 336
337
339
340
341
343
344
346
347
350
352
353
355
356
358
359
361
362 | <2200 <2233 <4000 Met | FEA
OTH
SEQ
Pro
His.
Thr
Gln
Glu
His
Thr | ATURE TERM TO Phe Ile Tyr 35 Asn Ser Ser Gly Phe 115 | E:
INFOI
CE: 4
Glu
Asp
20
Val
Lys
Ile
Leu
Glu
100
Lys | RMAT: Leu 5 Lys Thr Ser Arg Phe 85 Leu Asp | Pro Glu Asn Leu Thr 70 Trp Ala Glu | Desc
Ala
Thr
Leu
55
Ala
Thr
Asp | Leu Met Asn 40 Glu Val Ile Ala Ser | Pro Asn 25 Ala Leu Arg Leu Ile 105 Lys | Tyr
10
11e
Ala
Leu
Asn
Ser
90
Asn | Pro
His
Leu
Ser
Asn
75
Pro
Lys
Ala | Tyr His Glu Asn 60 Gly Asn Lys Ala | Asp
Thr
Gly
45
Leu
Gly
Gly
Phe
Gly
125 | Ala
Lys
30
His
Glu
Gly
Gly
110
Arg | Leu
15
His
Pro
Ala
His
Gly
95
Ser | Glu His Asp Leu Ala 80 Glu Phe Gly | | 336
337
339
340
341
343
344
346
347
350
352
353
355
356
358
361
362
364 | <2200 <2233 <4000 Met | FEA
OTH
SEC
Pro
His.
Thr
Gln
Glu
His
Thr
Ala | ATURE TERM TO Phe Ile Tyr 35 Asn Ser Ser Gly Phe 115 | E:
INFOI
CE: 4
Glu
Asp
20
Val
Lys
Ile
Leu
Glu
100
Lys | RMAT: Leu 5 Lys Thr Ser Arg Phe 85 Leu Asp | Pro Glu Asn Leu Thr 70 Trp | Desc
Ala
Thr
Leu
55
Ala
Thr
Asp
Phe | Leu Met Asn 40 Glu Val Ile Ala Ser | Pro Asn 25 Ala Leu Arg Leu Ile 105 Lys | Tyr
10
11e
Ala
Leu
Asn
Ser
90
Asn | Pro
His
Leu
Ser
Asn
75
Pro
Lys
Ala | Tyr His Glu Asn 60 Gly Asn Lys Ala Glu | Asp
Thr
Gly
45
Leu
Gly
Gly
Phe
Gly
125 | Ala
Lys
30
His
Glu
Gly
Gly
110
Arg | Leu
15
His
Pro
Ala
His
Gly
95
Ser | Glu His Asp Leu Ala 80 Glu Phe Gly | | 336
337
339
340
341
343
344
346
347
350
352
353
355
356
358
361
362
364
365 | <2200 <2233 <4000 Met | FEA
OTH
SEC
Pro
His.
Thr
Gln
50
Glu
His
Thr
Ala
Gly
130 | ATURE TO THE TYPE TYPE TYPE TYPE TYPE TYPE TYPE TYP | E:
INFOI
CE: 4
Glu
Asp
20
Val
Lys
Ile
Leu
Glu
100
Lys
Ala | RMAT: Leu 5 Lys Thr Ser Arg Phe 85 Leu Asp | Pro Glu Asn Leu Thr 70 Trp Ala Glu Leu | Desc
Ala
Thr
Leu
55
Ala
Thr
Asp
Phe
Val | Leu Met Asn 40 Glu Val Ile Ala Ser 120 Val | Pro Asn 25 Ala Leu Arg Leu Ile 105 Lys Asn | Tyr
10
11e
Ala
Leu
Asn
Ser
90
Asn
Ala
Asn | Pro
His
Leu
Ser
Asn
75
Pro
Lys
Ala
Gly | Tyr His Glu Asn 60 Gly Asn Lys Ala Glu 140 | Asp
Thr
Gly
45
Leu
Gly
Gly
Phe
Gly
125
Leu | Ala Lys 30 His Glu Gly Gly Gly Arg Glu | Leu
15
His
Pro
Ala
His
Gly
95
Ser
Phe
Ile | Glu His Asp Leu Ala 80 Glu Phe Gly Thr | | 336
337
339
340
341
343
344
346
347
350
352
353
355
356
358
361
362
364
365
367 | <2200 <2233 <4000 Met | FEA
OTH
SEC
Pro
His.
Thr
Gln
50
Glu
His
Thr
Ala
Gly
130 | ATURE TO THE TYPE TYPE TYPE TYPE TYPE TYPE TYPE TYP | E:
INFOI
CE: 4
Glu
Asp
20
Val
Lys
Ile
Leu
Glu
100
Lys
Ala | RMAT: Leu 5 Lys Thr Ser Arg Phe 85 Leu Asp | Pro Glu Asn Leu Thr 70 Trp Ala Glu Leu Asp | Desc
Ala
Thr
Leu
55
Ala
Thr
Asp
Phe
Val | Leu Met Asn 40 Glu Val Ile Ala Ser 120 Val | Pro Asn 25 Ala Leu Arg Leu Ile 105 Lys Asn | Tyr
10
11e
Ala
Leu
Asn
Ser
90
Asn
Ala
Asn | Pro His Leu Ser Asn 75 Pro Lys Ala Gly Glu | Tyr His Glu Asn 60 Gly Asn Lys Ala Glu 140 | Asp
Thr
Gly
45
Leu
Gly
Gly
Phe
Gly
125
Leu | Ala Lys 30 His Glu Gly Gly Gly Arg Glu | Leu
15
His
Pro
Ala
His
Gly
95
Ser
Phe
Ile | Glu His Asp Leu Ala 80 Glu Phe Gly Thr | | 336
337
339
340
341
343
344
346
347
350
352
353
355
356
358
361
362
364
365 | <2200 <2233 <4000 Met | FEA
OTH
SEC
Pro
His.
Thr
Gln
Glu
His
Thr
Ala
Gly
130
Thr | ATURE HER DOWN Phe Ile Tyr 35 Asn Ser Gly Phe 115 Trp Pro | E:
INFOI
CE: 4
Glu
Asp
20
Val
Lys
Ile
Leu
Glu
100
Lys
Ala
Asn | Leu
5
Lys
Thr
Ser
Arg
Phe
85
Leu
Asp | Pro Glu Asn Leu Thr 70 Trp Ala Glu Leu | Desc
Ala
Thr
Leu
55
Ala
Thr
Asp
Phe
Val
135
Ser | Leu Met Asn 40 Glu Val Ile Ala Ser 120 Val Pro | Pro Asn 25 Ala Leu Arg Leu Ile 105 Lys Asn Ile | Tyr
10
11e
Ala
Leu
Asn
Ser
90
Asn
Ala
Asn | Pro
His
Leu
Ser
Asn
75
Pro
Lys
Ala
Gly
Glu
155 | Tyr His Glu Asn 60 Gly Asn Lys Ala Glu 140 Gly | Asp
Thr
Gly
45
Leu
Gly
Gly
Phe
Gly
125
Leu | Ala Lys 30 His Glu Gly Gly 110 Arg Glu Thr | Leu
15
His
Pro
Ala
His
Gly
95
Ser
Phe
Ile | Glu His Asp Leu Ala 80 Glu Phe Gly Thr Ile 160 | ### VERIFICATION SUMMARY PATENT APPLICATION: US/09/831,050 DATE: 11/14/2001 TIME: 14:10:23 Input Set : A:\seqlist_1581.0800000 Output Set: N:\CRF3\11142001\I831050.raw